Category: Feature

Lifesigns

The USS Enterprise drops out of warp and slips into a parking orbit around an uncharted alien planet. The good Captain orders a scan for lifesigns, and within seconds he is being informed exactly what lifeforms are present, including the preindustrial tribes of humanoids on the southern continent. How feasible is this really? Well, unfortunately for Star Trek fans, identifying a species from orbit will perhaps forever remain in the realm of science fiction. For astrobiologists, however, revealing the presence of life on a remote planet is becoming possible even now, on 21st century Earth. Within a decade there will be telescopes capable of detecting the chemical fingerprints of life on planets nearly 50 light years away. And within out lifetimes there may even be telescopes able to image the oceans and continents of alien worlds.

Continue reading

How the Leopard got its Spots

leopardAlan Turing is considered to be one of the most brilliant mathematicians of the last century. He helped crack the German Enigma code during the Second World War and laid the foundations for the digital computer. His only foray into mathematical biology produced a paper so insightful that it is still regularly cited today, over 50 years since it was published. In it he described how a set of ‘reaction-diffusion equations’ explain how the wonderful diversity of animal patterns may be generated.

Read full article on +plus

This article has been reprinted in Muse, the YouthAgency magazine. The agency is run by the National Association for Gifted Children and aims to inspire able students to cultivate their abilities.  pdf copy of the reprint.

Practice Makes Perfect

practiceAs we saw in the last edition of +plus, mathematical techniques have been applied very successfully to analysing certain types of games. The two examples that we looked at were the simple subtraction game Nim, and the much more complex case of chess endgames. The next step is to see how computers, which are no more than automated maths machines, are being programmed to actually play chess themselves. It is theoretically possible to play chess perfectly, but neither humans nor machines will probably ever accomplish this. Computers have, however, already practically achieved perfection in draughts, and soon may be said to have ‘solved’ the game. Continue reading

Games People Play

gamesMathematicians love games. Not only can they have fun while looking like they’re busy working, but even the simplest games can demand clever tactics and strategies to win. These are the perfect kinds of problems for solving with maths.

One branch of mathematics, called Combinatorial Game Theory, was developed around 30 years ago specifically to deal with the analysis of games. It prescribes a way of breaking games down into smaller parts that are easier to examine, and then using a special kind of algebra to add up the values of the individual subgames. And if there’s one thing that mathematicians are good at it’s counting.

Read full article on +plus

Language and the Book of Life

The ambitious project of sequencing the DNA in the human genome released its first draft three years ago. At the time it was often portrayed as `reading the book of life’, but what is only recently being understood is how appropriate this metaphor really is. The jargon of molecular biology is scattered with terms borrowed from linguistics, such as transcribe, translate and code. The parallels between these two fields run much deeper than this though, and it has been discovered that both DNA and the proteins that it codes for have a grammatical structure like language. This has lead to the very productive swapping of ideas and techniques between biologists and linguists. For example, `authorship tests’ have been applied to unknown DNA sequences and `evolutionary trees’ have been constructed of old texts. But first, in what ways are DNA and proteins so profoundly similar to language? Continue reading